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Abstract: 

In a test of neural networks in high energy physics pattern recognition problems, drift 

chamber data from experiment E735 at the Tevatron proton-antiproton collider was used in a 

neural network simulation to fiid the primary event vertex. A three layer, feed-forward 

neural network was trained with the back-propagation technique to give the beam line vertices 

of tracks traversing sub-sections of the chamber. Summing the outputs of all sub-section 

networks then gives the primary vertex along the beam line. Results are compared to 

conventional methods. 

1. Introduction: 

The use of neural networks to perform pattern recognition has become an area of 

intense study. Neural networks have been applied, for example, to recognition of 

handwritten characters [I] and sonar returns [2]. An advantage of neural networks over most 

conventional techniques is their inherent parallelism, which can provide very fast 

performance if executed in neural network hardware. Also, some neural network 

architectures, such as the feed-forward network trained by the back-propagation technique, 

learn from examples. Such networks are flexible and adaptible and can perhaps perform tasks 

where no conventional algorithm is known. 

Recently, results of tests of neural networks in high energy physics pattern recognition 

problems have been presented. Examples include track finding in drift chambers [3], electron 

identification in calorimeters [4], and determining the slope and vertex of tracks [5]. 

Although conventional approaches to these problems are generally satisfactory, neural 

networks could have advantages where fast performance is required such as in on-line trigger 

applications and as Off-h? analysis “accelerators” to help process the very large data sets 

produced in many modem high energy experiments. 
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The neural network tests so far, including the work presented here, have been 

simulations on sequential computers and so offer no speed advantage yet. However, neural 

network VLSI hardware is now becoming available and will provide the full parallel 

performance of the network architectures. 

One difficulty in applying neural networks to high energy physics pattern recognition 

problems is that there is often a great number (hundreds to thousands) of signals from the 

detector systems. The hardware neural networks will be limited to less than a few hundred 

neurons for the near future. Also, if the training is done fmt by simulations on sequential 

machines and the interconnection strengths then loaded into a hardware network, the training 

technique takes increasingly long to run with increasing numbers of neurons and 

interconnections. However, for some tasks it is possible to divide the detector into identical 

sub-sections. A neural network is then trained on only the sub-section, and summing the 

outputs of all sub-section networks gives the final answer. 

We test this approach here by determining the primary vertex along the beam line of 

proton-andproton events using information from a drift chamber located next to the beam 

pipe. The transverse position of the vertex is restricted to the beam sire (about lmmradius) 

so only the one dimension (z) along the beam line needs to be determined. The vertex can 

occur over toughly a 1Sm range. The chamber is divided into overlapping sub-sections. 

Using the drift distances from the wires, the net is trained to determine the intercept along the 

beam line of tracks that traverse a given sub-section. The overlapping sub-sections are then 

processed through the network and the sum of their outputs gives a vertex distribution along 

the beam line. The position of the maximum of this distribution is taken as the primary 

vertex. (Here we take “primary”vertex to be the position along the beam line of the proton- 

antiproton collision and“track” vertex to be a given track’s intercept on the beam line which 

may or may not coincide with the primary vertex.) 

Fast determination of the primary vertex has applications in triggering. For example, 

one might want to restrict the primary vertex to a narrow section of the beam line for 

optimum detector acceptance. Also, searches for fast secondary decays might need to have 

first the primary vertex position. Another possible application could be at the SSC where 

there will usually be multiple interactions per beam crossing. The vertex distribution 
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mentioned above would have peaks at each primary event vertex. 

2. Vertex Chamber in Experiment E735: 

A schematic cross-sectional view of the E735 detectors in the CU interaction hall at the 

Tevatron collider is shown in fig. la. The detector system has been described in detail 

elsewhere [6,7]. It consists basically of two parts: (1) central detectors surrounding the 

interaction point for determining the charged multiplicity; and (2) a specmnneter to the side 

for momentum and mass-identification analysis of charged particles emitted in the central 

region. A planar drift chamber called the “z-chamber” on the spectrometer side of the beam 

pipe was used to find the primary vertex and also to help track particles entering the 

spectrometer [8]. 

Fig. lb shows a plan view of the detectors. Besides the z-chamber, primary vertex 

information is also available from tracks in the spectrometer and from the time of flight (TOF) 

scintillator counter arrays located around the beam pipe on each side of the the interaction 

region. The times of flight of charged particles from the interaction point to the counters are 

used to determine the interaction time and primary vertex. 

The z-chamber is lm in length along the beam pipe. There are three layers of wires 

with the layers separated by l.lcm (fig. 2a). The innermost layer is 13.lcm from the beam 

line. The wires are 1Ocm long, running vertically in fig. la and normal to be beam line. There 

are 96 sense wires per layer and spaced l.lcm apart. A single field shaping wire (not shown 

in fig. 2) separates the sense wires resulting in a maximum drift distance of 055cm. The 

middle layer is staggered by a half cell relative to the other two layers to help resolve the left- 

right ambiguity. 

The vertex chamber spans only 200 in azimuth. In the data here. there are on average 

only 2 to 4 tracks crossing it. Because of tracks from interactions in the beam pipe and from 

decays (the average number of such tracks is 3040% of the number of z-chamber tracks), 

tracks often point to separate beam line vertices, resulting in ambiguities as to which is the 

true event vertex. The spectrometer and the TOF vertex information can be used to check me 

z-chamber vertex. The resolution in z of spectrometer tracks projected to the beam line is 
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about lmm. However, there arc usually only 1 or 2 tracks in the spectrometer and they may 

not be primary tracks. In E735 data analysis, spectrometer tracks are accepted as primaries if 

th& x vertex matches the TOF or z-chamber vertex. The TOF primary vertex resolution is 

about 4cm. 

Using actual data rather than a Monte Carlo simulation to test the neural network 

introduces several real-world complications. Under i&al conditions the chamber achieved 

10(&m drift resolution, but due to the high background radiation levels in the CO interaction 

hall, the z-chamber was normally run at a lower than ideal voltage to extend its lifetime. This 

resulted in 500~ drift resolution, which in turn gave OScm vertex resolution for a single 

track. Also, the drift times refer to the distance of closest approach of the tmcks to the wires 

rather than the distance from the point where the tracks cross the sense wire planes. Thus a 

given drift time will correspond to a different point in space depending on the angle where the 

track crosses the chamber. Due to the single field wire geometry of the z-chamber, ionization 

from a single charged track often reaches mom than one sense wire in a given layer, 

especially for tracks at low angles relative to the beam line. 

The drift chamber data hem was obtained from events recorded on tape by experiment 

E73.5 at the Tevatron proton-antiproton Collider during a run in 198% 1989. Off-line the drift 

times have had pedestal values subtracted. Also, the times were converted to distances using 

a piecewise linear time to distance relationship made of 4 linear segments, each having a 

different slope for the different electron velocities across the drift cell. Because of the multiple 

hits per track problem, if two or mom hits were. contiguous in the same layer, only the hit 

with the smallest drift time was used by either the fitting methods or the neural network. (The 

multiple hit problem is not general to most other drift chambers so the filtering hem of only 

the smallest drift time hits wouldn’t have to be done when applying the neural network 

method to other chambers.) Despite the calibration and the filtering of multiple hits, the data 

include many “real world” problems, such as noise, inefftciencies and limited drift 

resolution, that present a rigorous test of the neural network method. 
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3. Z-Chamber Event Vertex by Track Fitting: 

Hem we give a brief description of the more conventional methods used in the E735 

off-line analysis to determine the primary event vertex with the z-chamber. The z-chamber 

analysis is described in mom detail in ref. [8]. A fist approximation of the vertex (called the 

“global” vertex) is made using either the TOF vertex or a method based on ref. 9. In the latter 

method, a distribution in x along the beam line is calculated whose maximum occurs at the z 

of the event vertex. (This is similar to the z vertex distribution of the neural net mentioned 

above but derived in a different way.). This distribution is derived by first dividing the vertex 

range into lcm bins. Beginning from one end of the vertex range, a”track” is found between 

the a bin and a hit in the outermost layer of the z chamber. The residuals between that track 

and all the hits in the other 2 layers are found (including both left-right possibilities for every 

hit). Similarly, the residuals are found for all other tracks between the a bin and the other hits 

in the outermost layer. The negative of the sum of the square of these residuals is entered into 

an exponential whose value is assigned to that z bin. The process is repeated for all other a 

bins. The maximum of the resulting distributions is shown [9] to occur at the event vertex. 

(Them are ambiguities if them am peaks in the distribution which am only slightly smaller 

than the maximum peak.) Fitting the distribution of the diffennccs between these global 

vertices and the vertices of projected spectrometer tracks gives a resolution of 1.5cm for the 

global vertex. 

Individual tracks are found by defining 0.5cm wide “roads” between hits in the inner 

and outer layer and requiring that there be a middle layer hit in the mad. Trying different fits 

for the different left-tight possiblities of the drift distance from the wires, the tit with the 

lowest &i-square is chosen as the track. 

Those z-chamber tracks which point within flOcm of the global vertex are. used to get a 

better vertex. If them is only one such track then its vertex is used as the event vertex. If there 

are 2 or more such tracks then they am m-tit requiring a common vertex. This gives a vertex 

resolution of 0.5cm. This final “track fit vertex”, as shown in figure 2a. is used to train the 

network and to determine the network p~rformancc. Note that since we use actual data, we 

do not know the “me” primary event vertex. The neural network vertex here is always 

compared to the tit vertex. 
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4. Track Vertex Finding with a Neural Network: 

To apply the neural network method to the z-chamber, it is divided into overlapping 18 

wire sub-sections as shown in fig. 2b. The 18 wires correspond to 18 input units in a 3-layer 

feed forward network as show in fig. 3. Reference [5] describes similar track vertex finding 

in 15 wire z-chamber sections. The activation values of the input units are linearly 

proportional to the drift distance values of the corresponding wires. To avoid ambiguity 

between a wire with no hit and the case of a track passing at the wire and giving zero drift 

distance, a minimum value is used for hit wires. Here a wire with no hit has 0.0 activation in 

the corresponding input unit and hit wires have activation between 0.2 and 1.0 

The 62 output units of the net correspond to 62 l.Ocm bins along the beam line. As 

indicated in fig. 3, the position of the vertex will be indicated by the center of a Gaussian (of 

sigma l&m) shaped cluster of 3 or 4 activated output units with all other output units off. 

Bins 2-61 correspond to a zb3Ocm range from the center of the given 18 wire section. Bin 1 is 

for vertices located less than -3Ocm from the center of the section and bin 62 for vertices 

greater than +3Ocm. 

The middle layer of the network has 128 “hidden” units. This number was chosen 

somewhat arbiuatily. Neural net performance generally seems to improve with increasing 

numbers of hidden units and the maximum number of inputs in a currently available neural 

network chip is 128 (Intel “ETANN” chip, see section 6). A bias unit (a unit whose 

activation is fixed to 1.0) is connected to all hidden and output units. Fig. 3 shows that each 

hidden unit is connected to every input unit and the bias unit. Similarly, every output unit is 

connected to each hidden unit and the bias unit. 

The activation of a hidden or output unit is proportional to the sum of the activations of 

units connected to it multiplied by a “weight” for each connection. For hidden unit j: 

where ak is the activation of input unit k, Wjk is the weight between input unit k and hidden 

unit j, and the sum is over all input units. The activation of hidden unit j is a sigmoidal 
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function (fig. 4) of this sum. Here the particular function used was: 

fj(SUlllj) = 1.0 / ( 1 .O + exp (-SUmj) 1 = aj. 

The sequence of actions to determine the vertex of tracks in a sub-section goes as 

follows (see also fig. 3). A track traverses an 18 wire sub-section creating ionization in three 

of the sense wire cells, The drift times of the electtons to the sense wires are converted to 

drift distances as describe in section 2. The three cot-responding network input units will have 

activations between 0.2 to 1.0 proportional to these drift distances. All other input urrrts will 

have 0.0 activations. The activations of the input units are passed to each of the hidden units, 

multiplied by a weight value that is unique to each input-hidden unit connection. Each of the 

hidden units then is activated according to the sigmoidal uansfer function. The hidden unit 

activations are passed to each of the output units, again with each connection having a unique 

weight. The output units determine their activation with a linear function (tig.4). (Linear 

functions for the output units gave slightly better results than sigmoidal functions.) The. 

network’s track vertex corresponds to the z position of the output unit whose value is largest. 

Averaging over the cluster of bins around the maximum bin gives a somewhat more accurate 

vettex value. Fig. 5 shows some examples of uacks in 18 wire sub-sections.. 

Note that the network has no a priori information on which side of the wire the track 

passed. This left-right ambiguity must be resolved by the network using the the pattern of the 

hits and the fact that the middle layer is staggered by a half cell. 

The values of the weights am the crucial factors which determine the response of the 

network to the inputs. Determining the weights is called the “training” of the network. Here 

the method used to train the network is the back-propagation technique described in ref. [lo]. 

This is an iterative procedure in which multiple passes are made through a huge “training set” 

of events, with the weights adjusted slightly after each event so as to reduce the overall error 

in the output for that event. Once a suitable set of weights is found, their values are fixed. 

In back-propagation the weight between output unit i and hidden unit j is modified 

according to 

AWij = rt(% - t&j fi(sumi) 
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where 9 is the target value for output unit i, q is a constant “learning” coefficient (0.5 used 

here) that determines the weight change step size, and fi(Sumi) is the derivative of the output 

function with respect to changes in sumj. If k is an input unit and j is a hidden unit, the 

formula becomes 

AWjk = TJlakf’j (SUlIlj)~f’i(SUmi)(iii - ti)Wij 

where the sum is over all output units. The differences between the target values and the 

output values are “propagated” back to the weights between the hidden and input units. A 

modification of the procedure is to calculate the averages of Awij and AWjk over several 

patterns and then make the changes. 

For a set of such input-target patterns. the back-propagation performs aminimization of 

the sum: 

E=;(f(a!-t’r) 

where p refers to each pattern in the training set. After iterating through the training set until 

the weight changes become small, the weights ate fixed and the net tested on an independent 

set of patterns. Further training can continue if the performance on the independent set is not 

deemed sufficient. 

The training set here for the 18 wire sub-section network was created from z-chamber 

events with tracks and vertices found by the methods described in section 3. For a given 

event, 18 wire sections were. examined, starting from one end of the chamber and stepping 

through the chamber 1 wire at a time until 3 tit track hits were contained within the section. 

Fig. 5 shows examples of sub-section patterns. For such an event, the 18 drift distances of 

the wires and 64 target values for the output units (the fit track vertex position given as a 

Gaussian of sigma 1.0 as shown in fig.3) were recorded. The training set consisted of 5700 

patterns with 1 fit track only (i.e. 3 hits only), 2850 patterns with 1 tit track plus at least one 

6 



background hit not used by the fitting program, 2850 patterns with 2 fit tracks (6 hits only) 

from the same vertex, and 600 patterns with all inputs 0.0 and all outputs 0.0. (The latter was 

to insure that the bias unit didn’t produce a non-mm output when all inputs were mm). The 

training set did not include cases where there were tracks in the sub-section from different 

vertices or where there were multiple contiguous hits per layer for a single track. 

In general, the larger the training set, the better the network performs on independent 

sets. This is intuitively reasonable since basically the network is doing a mapping from “drift 

distance space” to “track vertex” space. The mom points sampled in these spaces, the better 

the network learns the mapping. Even with these 12000 patterns in the training set, the 

training is not perfect and the output response to a track of a given angle will vary somewhat 

depending on where it goes through the sub-section. 

After roughly 4 million iterations through the training set, the network’s performance 

was tested on an independent set of events with same cuts (i.e. require tracks to come from 

same vertex and no multiple contiguous hits). Fig. 6 shows disuibutions of the difference in 

the network’s vertex and the target vertex from the tit tracks. The net vertex hem is the 

average over the range of f2 bins around the bin with the maximum activation. The track 

vertex resolution (resolutions hem are. expressed as the sigma of the Gaussian tits) for single 

uack events with no noise is 0.72cm. If there are background hits the resolution is 1.7cm and 

for 2 track events the resolution is 2.lcm. In all three cases there are non-Gaussian tails, 

especially for the last two cases. These tails arise primarily because of track ambiguities. Fig. 

7 shows cases of ambiguous tracks. Even with only three hits, there can be ambiguities, 

especially for low angle tracks. Increasing the number of hits because of backgrounds or 

extra tracks further increases the possibility of ambiguities. Note that the network often gives 

some output response at each of the different vertex possibilities. 

5. Primary Event Vertex: 

For a whole proton-antiproton event, the primary vertex is determined by feeding the 

drift times of overlapping 18 wire sections (fig. 2b) sequentially into the network simulation 

and summing the outputs as described earlier. If this was done with neural network 

hardware, the process would be entirely parallel. Ideally, the network would be trained to 
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handle correctly any possible input pattern. However, to reduce the range of inputs and the 

training set size, it was required here that before a network output was added to the overall 

vertex distribution, each layer of the given sub-section had to have between 1 and 3 hits and 

total number of hits less than 7. This meant that sub-sections with only one or two 

background hits or a large cluster of hits were ignored. Since the net was not trained on such 

patterns, the network output vertices for these patterns were unreliable. However, even with 

these cuts, all events in the independent test set had at least one sub-section that passed the 

cuts. For a trigger, these simple cuts could be calculated in parallel with the network 

hardware by using fast logic circuits to decide whether the net’s output should be passed onto 

the next level that adds all of the networks together. 

The outputs of the nets are added as shown in tig.2b. The maximum of the resulting 

distribution indicates the position of the primary vertex (flg.2a). Fig.8 and 9 show several 

events. Fig.lOa. shows the distribution of differences between the fit tracks vertex and the 

net vertex.The sigma of the Gaussian is 1 Acm There are long non-Gaussian tails primarily 

due to cases where there are different tracks pointing to different vertices (the network 

chooses a different vertex than the one the fit chose) and where clusters of hits cause the 

network to give an erroneous vertex (fig.9). The network maximum peak is found to be 

within flOcm of the fit vertex in 87% of the events. This compares to about 80% of the TGF 

vertices found within 1Ocm of the fit vertex (fig. 1Oc). If no cuts are made in the test set on 

the number of hits per layer and on the total number of hits in the sub-sections, the sigma is 

1.5cm and 82% of the entries are within flOcm of the fit vertex. 

Fig. lob shows a distribution of differences between the tit vertex and the network 

distribution peak nearest to the tit vertex. (Of course, which peak is the nearest isn’t known 

before fitting). Here the sigma is 1.3cm and the tails are reduced. There is a peak within 

1Ocm of the tit vertex in about 98% of the events. This indicates that the net almost always 

finds at least one track pointing towards the tit vertex but that the sum of the outputs is not 

always largest there. This can be due to genuine primary vertex ambiguities. For example, 

note in fig. 9d that the TOF vertex agrees with the network vertex and not the tit vertex. The 

failure of the largest peak not to be near the fit vertex can also be due to cases where tracks 

pointing towards the fit vertex do not give large enough output activations (the network 
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output decreases for cases of track ambiguities especially). In addition, the network track 

vertex resolution may not be good enough for the vertices of tracks in two separate sub- 

sections always to overlay well enough to make one large peak. 

The z-chamber spans a small section of the total solid angle and so the number of tracks 

in it is small. Since the percentage of tracks from secondaries will fluctuate from event to 

event, the vertex ambiguities can arise regardless of the method used. From scanning events 

by eye and comparing the fit vertex to the TOF and spectrometer track vertex, the fit event 

vertex is ambiguous in about 5%10% of the events. For a chamber that covered a larger 

portion of the solid angle (e.g. if there were 3 other z-chambers surrounding the beam pipe in 

a box arrangement), the performance of the network method hem would improve since the 

number of tracks pointing at the true primary vertex would increase. 

For the results shown here, the sub-sections were stepped every 2 wires through the 

chamber. In the overlapping regions of the sub-sections, tracks nearly normal to the beam 

pipe can produce outputs in mom than one sub-section network. This multiple counting is not 

really a problem (otber step sizes were tried and results varied little) since it just adds some 

redundancy to the vertex finding, which helps to smooth out the non-uniformity in network 

response mention earlier. If it is desired to eliiate multiple counting the net could be 

trained, for example, to ignore tr2cks totally contained within the overlapping section of the 

net on, say, the left hand side. 

6. Discussion: 

We’ve shown that a neural network can be trained on actual experimental data to find 

the vertex of tracks in a sub-section of a drift chamber. Adding the outputs of such networks 

from over-lapping sub-sections spanning the entire chamber provides the primary vertex of 

proton-antiproton events. The performance is nearly as good as a more conventional off-line 

fitting algorithm used at present in E-735 analysis and is better than an off-line TOF vertex. 

To achieve this, the net had to be trained with data which had many complicating factors such 

as 5COpm drift resolution, noise hits, and secondary tracks. For a single 18 wire sub-section 

the track vertex resolution was 0.72cm for single tracks and 2.lcm for 2 tracks. Adding all 

sub-section outputs together gave a primary vertex resolution of 1.4cm. Because of track 
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and vertex ambiguities, there are long non-Gaussian tails to both distributions. The 

performance of such a method if applied to other detectors should improve as the sample of 

tracks increases with larger solid angle coverage. Better detector resolution, more layers, and 

the absence of multiple hits for single tracks would help, as well. Improving the network 

performance is also being studied, such as varying the number of hidden units. The 

performance hem, though, may already be adequate for some trigger applications. 

For on-line use the neural network method can be compared to the TOF vertex, which 

might conceivably be available on-line. The TOF vertex used hem came after timing and 

pulse height calibrations, corrections for time slewing (variation of timing with pulse height) 

and for multiple hits in individual counters [6]. The TOF vertex resolution is about 4cm as 

compared to 1.4cm for the neural net. The neural net vertex resolution would improve 

substantially with better drift resolution and more drift chamber layers (to reduce the 

ambiguities), whereas it would be very difficult to improve on the 25Opsec timing resolution 

of the E735 TOF system. Also, the neural net method provides for multiple vertices in a 

straightforward way. 

The approach here of training nets on sub-sections might be applied to other tasks. For 

example, instead of finding the intercept of tracks with the beam line, the intercept of tracks 

with a detector at some radius from the beam line could be determined. Correlation of tracks 

with calorimeter showers or muon counter hits could then be done. 

A hardware implementation of a neural network vertex finding system may soon be 

feasible using new VLSI chips. For example, the Intel ETANN chip [ 1 l] has 64 totally 

interconnected neurons and can be configured for 128 inputs and for multi-layer use. The 

neural network here would need 3 such chips: 2 for the hidden layer and 1 for the output 

layer. Circuit simulations and hardware tests will be needed to establish the suitability of 

these chips to the vertex finding type application discussed here. It’s encouraging, though, 

that the number of neurons in the first generation of chips is already of the scale requited 
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Fig. la. Cross-section of E735 detectors at the Tevauon CO intersection halL Spectrometer 

detectors not shown. (Note that the Tev beam is not centered in beam pipe at CO.) 
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Fig. lb. Plan view of E735 detectors. For clarity, central tracking chamber and other 

detector in region surrounding beam pipe are not shown. 



(a) Z Chamber Event 
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Fig.2a. A proton-antipmton event showing hits in z-chamber. The beam pip% z-chamber 

enclosure and field wires are not shown. Shown am the primary vertex 

found by hack fitting, the time-of-flight (TOI? vertex (displaced below beam line for 

clarity) and the vertex given as the maximum in a neural network output distribution. 

Each point in the network distribution *presents a lcm bin along the beam line. 



(b) Schematic of Z Chamber Neural Network System 
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Fig.2b. Signals from overlapping 18 wire sub-sections of the z-chamber am fed into neural 

networks. The output of each network represents the possible position of the 

intercepts of tracks in the subsection over a portion of the beam line. Adding the 

overlapping network outputs for two tracks from an event vertex gives the distribution 

shown. 



NEURAL NETWORK FOR Z-CHAMBER SUB-SECTION VERTEX 

Input = 18 Sense Wire Drift Times 
Output = 60 l.Ocm Bins From -3Ocm to +30cm 

+ 1 Bin for Z<-30cm + 1 Bin for Z>+30cm 

Target Distribution: 

Output Distribution: 

Output Units: 

Hidden Units: 

Input Units: 

Wire #: 

Fig. 3. The neural network architecture used to determine the vertex of tracks in 18-wire 

z-chamber sub-sections. All input units and the bias unit are connected to all hidden 

units. All hidden units and the bias unit are connected to all output units. Only a few 

of the connections are shown. The bias unit has an output activation fixed to 1.0. 
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Fig.4. Neuron output activation as function of the weighted inputs. The sigmoidal output 

was used for the hidden units, linutr for the output units. 
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Fig.5. Examples of hits in 18 wire sub-sections of the z-chamber. The fit vertex is compared 

to the neural network vertex given as the position of the maximum output unit. 

(a)-(b) single tracks, (c) single uack plus background hit, (d) 2 tracks. 

Vertical lines represent drift distances from the sense wires with left-right ambiquities. 

Otherwise, symbols are same as in figure 2a. 
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Fig.6. Distributions of differences between network vertex and fit vertex for 18-wire 

sub-section events. (a) single tracks in sub-section, (b) single tracks plus background 

hitts, (c) 2 tracks. 
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Fig.7. Examples of 18 wire sub-section events in which the network vertex and fit vertex 

disagree. (a)-(b) single hacks, (c) single track plus background hit, (d) 2 tracks. 

Vertical lines represent dxift distances from the sense wires with left-right ambiquities. 

Otherwise, symbols same as figure 2a. 
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Fig. 8. Examples of whole z-chamber events in which all l&wire sub-section networks have 

been added together. Symbols defined in fig.2a. 
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Fig. 9. Exaaples of whole z-chamber events in which the fit track vertex a& network vertex 

disagree. Symbols defined in fig.2a. 
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Fig.10. Distributions of differences between the fit vettex and (a) the position of the 

maximum in dte network output disaibution, (b) tie position of the peak closest to the 

tit vertex, and (cc) the TOF vertex. 


